心理语言规范使用数字分数表示各种情感和心理构造,并在自然语言处理的各种应用中使用。 它们通常在句子级别使用,其分数是通过使用简单的汇总策略外推单词级别的分数估算出来的,而汇总策略可能并不总是最佳的。 在这项工作中,我们提出了一种新颖的方法来估计句子水平上的心理语言规范。 我们在单词级别的注释上应用多维注释融合模型,以估计可捕获不同规范之间关系的参数。 然后,我们在句子级别使用此参数来估计规范。 我们通过预测各种规范维度的句子级别得分并与标准单词聚合方案进行比较来评估我们的方法。
原文标题:Sentence level estimation of psycholinguistic norms using joint multidimensional annotations
原文:Psycholinguistic normatives represent various affective and mental constructs using numeric scores and are used in a variety of applications in natural language processing. They are commonly used at the sentence level, the scores of which are estimated by extrapolating word level scores using simple aggregation strategies, which may not always be optimal. In this work, we present a novel approach to estimate the psycholinguistic norms at sentence level. We apply a multidimensional annotation fusion model on annotations at the word level to estimate a parameter which captures relationships between different norms. We then use this parameter at sentence level to estimate the norms. We evaluate our approach by predicting sentence level scores for various normative dimensions and compare with standard word aggregation schemes.
原文作者:Anil Ramakrishna, Shrikanth Narayanan
原文地址:https://arxiv.org/abs/2005.10232
基于联合多维标注的心理语言规范的句级估计(CS CL).pdf ---来自腾讯云社区的---用户7305506
微信扫一扫打赏
支付宝扫一扫打赏