您的位置 首页 > 腾讯云社区

神经二部匹配(CS ML)---蔡秋纯

图神经网络已经发现在算法空间学习中的应用。但是,从理论计算机科学家的角度来看,现有研究选择的算法(排序,广度优先搜索,最短路径查找等)通常是微不足道的。该报告描述了如何将神经执行应用于复杂算法,例如通过将最大二部匹配简化为流量问题并使用Ford-Fulkerson查找最大流量来找到最大二部匹配。 这仅通过基于单个GNN生成的特征的神经执行来实现。 评估显示出具有很强的概括性结果,其中网络几乎100%的时间都实现了最佳匹配。

原文标题:Neural Bipartite Matching

原文:Graph neural networks have found application for learning in the space of algorithms. However, the algorithms chosen by existing research (sorting, Breadth-First search, shortest path finding, etc.) are usually trivial, from the viewpoint of a theoretical computer scientist. This report describes how neural execution is applied to a complex algorithm, such as finding maximum bipartite matching by reducing it to a flow problem and using Ford-Fulkerson to find the maximum flow. This is achieved via neural execution based only on features generated from a single GNN. The evaluation shows strongly generalising results with the network achieving optimal matching almost 100% of the time.

原文作者:Dobrik Georgiev, Pietro Lió

原文地址:https://arxiv.org/abs/2005.11304

神经二部匹配(CS ML).pdf ---来自腾讯云社区的---蔡秋纯

关于作者: 瞎采新闻

这里可以显示个人介绍!这里可以显示个人介绍!

热门文章

留言与评论(共有 0 条评论)
   
验证码: