两种主要的神经文本生成方法是完全自回归模型,使用串行波束搜索解码,和非自回归模型,使用无输出依赖的并行解码。提出了一种具有次线性并行时间生成的自回归模型。考虑到上下文有界的条件随机场可以并行解码,我们提出了一种高效的级联解码方法来产生高质量的输出。为了参数化这个级联,我们引入了一个Markov变换器,一个流行的完全自回归模型的变体,它允许我们同时解码特定的自回归上下文截断。这种方法只需要对标准的自回归训练稍加修改,同时与五个机器翻译数据集上的现有方法相比,显示出具有竞争力的准确性/速度折衷。
原文标题:Cascaded Text Generation with Markov Transformers
原文:The two dominant approaches to neural text generation are fully autoregressive models, using serial beam search decoding, and non-autoregressive models, using parallel decoding with no output dependencies. This work proposes an autoregressive model with sub-linear parallel time generation. Noting that conditional random fields with bounded context can be decoded in parallel, we propose an efficient cascaded decoding approach for generating high-quality output. To parameterize this cascade, we introduce a Markov transformer, a variant of the popular fully autoregressive model that allows us to simultaneously decode with specific autoregressive context cutoffs. This approach requires only a small modification from standard autoregressive training, while showing competitive accuracy/speed tradeoff compared to existing methods on five machine translation datasets.
原文作者:Yuntian Deng, Alexander M. Rush
原文地址:https://arxiv.org/abs/2006.01112
基于Markov变换的级联文本生成(CS CL).pdf ---来自腾讯云社区的---蔡秋纯
微信扫一扫打赏
支付宝扫一扫打赏